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A variation of the classical Taylor–Couette system is studied where, with the outer cyl-
inder stationary, the inner cylinder rotates at constant angular velocity while executing
harmonic oscillations in the axial direction. Experiments reveal a Hopf (Neimark–
Sacker) bifurcation from a limit cycle to a torus. Alternating bands of frequency-locked
and quasi-periodic flow are observed and identified. Power spectral plots and (delay
reconstructed) Poincaré maps are used to characterize the temporal dynamics. Results
are presented on the rotation number variation across parameter space, the shape
and growth of frequency-locked resonance horns, and the spatial development of the
flow considerably beyond the primary transition surface.

1. Introduction
The review by Davis (1976) and numerical work by Marques, Lopez & Iranzo

(2002) show that when flows are subject to external time-periodic forcing they
are susceptible to complex spatio-temporal instabilities. Strong motivation for
investigating such flows arises from their widespread technological importance (for
instance, their occurrence in pumping processes) and the opportunity to explore rich
dynamical behaviour in fluid systems. Systems exhibiting spatio-temporal instabilities
are often complicated, and so relatively simple representative set-ups can be useful
in attempts to isolate and understand the role played by the specific instability
mechanisms that give rise to the observed flow states.

In general, it is difficult to predict quantitatively the response of a dissipative
system to externally applied forcing. When a system is parametrically forced, complex
temporal dynamical phenomena (such as frequency-locking, quasi-periodicity and
chaos) often arise. Here, frequency locking or ‘resonance’ refers to a strong interplay
and coupling between the external forcing frequency and one of the system’s natural
frequencies. Regions in parameter space (defined later by non-dimensional parameters)
exist where such a relation between these two frequencies persists (that is, their ratio
remains constant and equal to a rational number) for entire intervals of forcing
frequencies and amplitudes.

Frequency locking and quasi-periodicity are typical of the dynamical behaviour
observed when a periodic oscillation loses stability. If it loses stability through a Hopf
bifurcation it may do so in three distinct generic ways, the precise manner depending
on how the eigenvalues of the (monodromy) matrix associated with the instability
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exit the unit circle in the complex plane (Guckenheimer & Holmes 1983). The first
two types of crossing correspond to codimension-1 bifurcations; crossing through
+1 implies a saddle-node bifurcation, while crossing through −1 implies a period
doubling bifurcation. The third possibility (which is the case of interest here) involves
a pair of complex conjugate eigenvalues (α ± iβ) simultaneously crossing the unit
circle, and corresponds to a Hopf bifurcation (which for limit cycles is also referred
to as a Neimark–Sacker bifurcation). If this bifurcation occurs in the absence of any
hysteresis (that is, if it is supercritical in character), the instability leads to a stable
attractor close to the original limit cycle.

This new attractor is a two-dimensional invariant torus T 2. The resulting solutions
of the instability lie on this torus, and may be quasi-periodic (winding themselves
densely on the surface of the torus), or periodic, that is, frequency-locked (winding
themselves periodically around the torus surface to form a closed spiral). A new
frequency (associated with the angle at which the eigenvalue pair exits the unit circle)
emerges via this bifurcation, and two parameters are now necessary to unravel all
the possible dynamics, which include alternating regions of frequency-locking and
quasi-periodic motion (see, for example, Bergé, Pomeau & Vidal (1984)).

Neimark–Sacker bifurcations have been found in several low-dimensional ODE
systems, such as in chemical reactors (Kai & Tomita 1979; Keverekidis, Schmidt &
Aris 1986) and chemostats (Pavlou & Kevrekidis 1992). Here, we are interested
in a hydrodynamic system (Taylor–Couette flows with spatio-temporal forcing)
governed by a set of dissipative PDEs. When such a system is periodically forced,
we expect initially a periodic solution with the period of the forcing. If, at higher
forcing amplitudes, this ‘entrained’ base periodic solution loses stability, a parametric
resonance governed by a Neimark–Sacker bifurcation is expected. Neimark–Sacker
bifurcations have been observed experimentally in unforced systems such as thermal
convection (Chiffaudel & Fauve 1987; Ecke & Kevrekidis 1988; Glazier & Libchaber
1988) and vortex breakdown flow (Stevens, Lopez & Cantwell 1999).

The motivation for the present study lies in a series of related experimental and
numerical investigations. The numerical work of Hu & Kelly (1995) demonstrated the
possibility of achieving significant flow control (delay of the onset of instability)
through periodic forcing in closed systems. Specifically, they computed a large
degree of stabilization of the base flow in an infinitely long Taylor–Couette flow
via axial oscillations of the inner cylinder. Parallel experimental work by Weisberg,
Kevrekidis & Smits (1997) illustrated, for the first time, the stabilizing effect of axial
oscillations of the inner cylinder on the critical rotation rate for the initial transition
to Taylor vortex flow (TVF). The degree of stabilization observed in the experiments
exceeded that of the numerical study, and Marques & Lopez (1997) showed that
the principal reason for this discrepancy was due to the presence of endwalls and
curvature effects in the experiment. Their results agreed remarkably well with those
of Weisberg et al. (1997).

While the majority of the primary transitions documented by Weisberg et al. led to
the formation of axisymmetric Taylor cells, Weisberg (1996) reported the appearance
of non-axisymmetric cells as the primary transition for forced Taylor–Couette flow
(specifically restricted to large amplitudes and small frequencies of forcing). The
vortices, upon formation, were not normal to the cylinder axis (as in axisymmetric
unforced Taylor–Couette flow) but tilted. These observations were initially viewed as
the manifestation of a higher-order instability and were grouped together with other
‘anomalous’ observations. A Floquet analysis by Marques & Lopez (1997) considered
the effect of axially and azimuthally periodic perturbations to the time-dependent base
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flow. They too found that in narrow windows of parameter space, corresponding to
large forcing amplitudes and small frequencies of the forcing, the primary bifurcation
of the base state led to a non-axisymmetric flow. A key contribution of their work
was the prediction of regions of complex spatio-temporal instabilities that give rise to
the dynamics within this window. Marques & Lopez (2000) focused on these narrow
windows in parameter space and discovered strong temporal resonances as well as
competition between various spatial modes that were simultaneously excited. An
excitation diagram illustrating the critical surface for the bifurcation, and the strong
resonances to be expected, was presented. Floquet analysis is, of course, linearized
around a base flow and as such applies only close to the bifurcation point; no
information on the postcritical development after the bifurcation was obtained.

Beyond the criticality threshold into the nonlinear regime, the torus is often observed
to break down and the flow becomes temporally chaotic. Such regions are the focus
of the latter part of this paper. At criticality, inclined wavy Taylor spirals form.
Their inclination (with respect to the cylinder axis) varies periodically with time.
The Taylor spirals are physically characterized by two properties: an azimuthal
wavenumber n and an axial wavenumber k. In any hydrodynamic system, as the
parameters leading to a Neimark–Sacker bifurcation change, then so do the spatial
properties of the bifurcating solution. That is, in our system, the axial wavenumber
k and the azimuthal wavenumber n may change. Whereas the angle of inclination of
the spirals varies periodically in time, the wavenumbers do not. They are fixed in time
for a given mode (or flow state) and so, for practical convenience, we limit ourselves
to n and k when attempting to characterize the wavy spiral states.

For low-dimensional systems, the dynamics resulting from a Neimark–Sacker
bifurcation are characterized by a certain temporal complexity, involving a two-
parameter interplay between quasi-periodicity and frequency-locking (resonance).
For extended systems, such as the hydrodynamic system under investigation, the
bifurcation can also lead to the excitation of modes with differing spatial structure. The
spatial and temporal interactions between the various modes can lead to subsequent
complicated spatio-temporal behaviour; in particular, we have explored the spatial
structure and changes that occur during such a torus breakdown.

We have attempted to define the spatial characteristics of the flow through the
(n, k) pair, though the uniqueness of the flow state cannot be guaranteed. Prior
to transition, n= 0 and k =0. Beyond criticality, the variation in (n, k) contains
information pertaining to: (i) which wavenumber dominates; (ii) how the dominant
wavenumber varies with axial and azimuthal Reynolds number; and (iii) whether
there is any apparent connection between changes in the temporal behaviour of the
bifurcated solution and its spatial properties. The expected variation in (n, k) is not
clear, except that it will result from a nonlinear interaction between the circulation
within the Taylor cells and the time-periodic axial flow between the cells. Wereley &
Lueptow (1998) investigated the effect of constant annular Poiseuille flow on circular
Couette flow (CCF) and found increasing axial wavenumber with axial Reynolds
number. The interaction of CCF with time-periodic annular Poiseuille flow has not,
to our knowledge, been previously investigated.

The principal contribution of the present work is the detailed description of the
Neimark–Sacker instability in this flow beyond the immediate neighbourhood of the
bifurcation surface. First, we investigate the physical manifestation of the bifurcated
flow states and their subsequent spatial destabilization, the variation of the rotation
number (the ratio of the bifurcation frequency to the forcing frequency) along ‘cuts’
in general parameter space, and the shape and growth of the frequency-locked
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Figure 1. Diagram of the set-up, including modifications made to the original apparatus.

resonance horns (these are regions which contain the frequency-locked dynamics).
Taken as a whole, these experiments represent the first attempt to explore the
physical manifestation of the instability in regions that lie considerably beyond the
instability threshold. Where possible, comparisons to related numerical work are
made. In addition, we investigate the postcritical spatial behaviour of the bifurcated
flow states, particularly the response of wavy vortex flow to increasing axial forcing,
the response of a non-axisymmetric n �= 0 mode located just above the critical
surface to increasing rotation rates, and the possible correlation among changes in
the postcritical spatial structure and temporal dynamics.

2. Experimental techniques
2.1. Taylor–Couette apparatus

The apparatus used in this study, shown in figure 1, was a modified version of
that used by Weisberg et al. (1997). The stainless steel inner cylinder has an
outer diameter of 3.003 ± 0.001 in (76.28 ± 0.03 mm) while the clear acrylic outer
cylinder has an inner diameter of 3.318 ± 0.001 in (84.28 ± 0.03 mm) and thickness of
0.466 in (11.83 mm). (These tolerances were determined by the accuracy level of the
professionally machined cylinders.) The upper and lower ends of the test section are
bounded with watertight seals. A water-tight spring-loaded rubber lip seal is used at
the lower end of the inner cylinder while an end cap machined from DelrinTM is used to
seal the upper end of the test section. The gap width d is 4 mm, and the length of the
test section L =152d so that endwall effects are minimized in comparison to many
prior experiments (Cole 1976). Cole noted that endwalls affect the flow dynamics
only in facilities with aspect ratio L/d less than about 40. This value is related to
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studies without axial forcing, and no such study exists for the case when forcing is
present. However, the observed transition Reynolds number for the onset of unforced
Taylor vortex flow agrees to within experimental uncertainty with that predicted by
Marques & Lopez (1997) for the case of infinitely long cylinders.

The inner cylinder is capable of two independent motions, azimuthal rotation
and axial translation. Azimuthal rotation is imparted via a stepper motor driven in
half-stepping mode which, combined with a 2:1 timing belt drive, performs 800 steps
rev−1 of the inner cylinder. The axial motion is controlled by a separate stepper motor
operating at 1000 steps rev−1 driving a Scotch-yoke mechanism. The effect of the
stepping action on the flow dynamics can be safely assumed to be negligible because
the investigations of Donnelly (1960), in which the effects of time modulation of the
inner cylinder rotational speed were measured for various radius ratios, showed that
no measurable effects should be observed for extraneous frequencies 800 times larger
than the rotational frequency. The inner cylinder motion was characterized by typical
angular and axial frequencies of about 0.1–0.2 Hz, angular and axial velocities of
about 20 mm s−1 and 100 mm s−1, and a stroke length of about 100 mm.

It is important to quantify the effects of eccentricity in the alignment of the
cylinders. The total maximum eccentricity measured by a spring-loaded dial indicator
was 0.001 in 0.03 mm or 0.6 % of the gap width. According to Cole (1976), this
changes the critical Reynolds number by less than 1%. Coupled with the excellent
agreement found between our measurement of transition Reynolds number and the
numerical prediction for the unforced case, it is reasonable to assume that eccentricity
plays a negligible role in the dynamics of the flow.

The inner and outer cylinder radii are denoted by ri and ro, respectively. The
incompressible fluid has kinematic viscosity ν. The inner cylinder rotates with angular
velocity Ω while executing axial oscillations with frequency ωf and experiences a
maximum axial translational speed U . The axial and azimuthal Reynolds numbers
are defined by:

Reax = Ud/ν, (2.1)

ReΩ = Ωdri/ν. (2.2)

The forcing frequency is non-dimensionalized by the viscous time scale so that

ω = ωf d2/ν. (2.3)

Finally, the two frequencies may be related via the applied frequency ratio

fapp = ωf /Ω, (2.4)

where a high fapp means that the inner cylinder executes many axial oscillations
during one azimuthal rotation.

The working fluid is a 20:1 mixture of water and Kalliroscope AQ-1000 rheoscopic
concentrate. The flakes align with the local shear stress and are effective for visualizing
parallel shear flows, and the results from Savas (1985) suggest that such a technique
should provide an accurate representation of the flow field in Taylor–Couette flow.
The viscosity–temperature relationship of the working fluid was obtained from a
calibration performed by the Energy Materials Testing Laboratory and can be found
in Weisberg (1996).

Two major modifications were made to Weisberg’s original apparatus. First, in
order to reduce vibration levels produced by gears and driving mechanisms, a large
framework was attached to the experiment at three points and also to a laboratory
wall. The outer cylinder was attached to this frame via a rigid semi-circular collar.
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The rotational stepping motor was connected to the 2:1 timing belt drive by a flexible
loose-fitting coupling. This coupling substantially reduced the level of vibrations
originating from the motor that were transmitted to the inner cylinder. Second, a
glass tank containing light mineral oil was installed to enclose the outer cylinder.
The oil in the glass tank substantially aided visualization of the flow by reducing
stray light reflections originating from various surfaces, and it eliminated virtually all
refraction effects when viewing the flow at an angle to the outer cylinder (the index
of refraction of the clear acrylic is 1.49 while that of the mineral oil is 1.51). The oil
also acted as a thermal insulator for the fluid in the test section since it has a high
specific heat capacity.

The temperature must be controlled precisely because it has a strong effect on the
fluid viscosity: a 0.1 ◦C change produces a change in viscosity ν, and hence Reynolds
number, of about 2%. A K-type thermocouple was placed flush with the inner
surface of the outer cylinder roughly equidistant from the upper and lower ends of
the annulus. The absolute accuracy of the thermocouples used is better than ± 1◦C.
Thermocouples were also used to monitor the temperature at various points in the
oil bath, at the ends of the annulus and around the outer cylinder circumference.
Azimuthal temperature variation on the outer cylinder did not exceed 0.1◦C while
the axial variation did not exceed 0.2◦C. During data acquisition, the oil was heated
slightly above ambient temperature with two fully submerged 254 mm × 127 mm
250 W heating mats and circulated continuously by two electric impeller mixers
submerged in the oil and placed approximately at the centre of the tank. The oil was
maintained to within ± 0.06◦C of a fixed reference temperature (at a reference point
in the tank) by an Omega CN76000 microprocessor-based feedback temperature
controller. Because of the large thermal inertia of the oil, the working fluid took
several hours to reach stable temperature. Even without the feedback control, the
fluctuations in temperature were often within the ± 0.10 ◦C limit.

The experimental measurement errors in the Reynolds numbers and frequency
estimates arise from errors in measuring U, d, ν, Ω, ri, d and ωf . The maximum
percentage errors (as opposed to the r.m.s. error) in determining the dimensionless
parameters, calculated using the methods described by Bendat & Piersol (1966), are
δReax/Reax =2.0%, δReΩ/ReΩ =1.1% and δω/ω = 2.1%.

2.2. Cylinder motion history

As shown by Coles (1965), the flow state at any fixed set of parameter values
depends strongly upon the history of the cylinder motion. For some specific Reynolds
numbers, Coles was able to generate up to 26 different flow states. Thus, in order to
maintain uniqueness of the flow state, it is important to accelerate the cylinders at a
fixed known rate in all experiments. Andereck, Liu & Swinney (1986) found that for
dimensional acceleration less than 0.15 rad min−2 acceleration effects did not appear
to influence the location of transition boundaries. In our facility, this corresponds
to dReΩ/dt of 0.005 s−1. The angular acceleration was conservatively restricted to
0.0015 s−1, that is, a third of the rate suggested by Andereck et al. The rate of change
of the axial Reynolds number was set to 0.025 s−1. The two stepper motors were
driven by separate square wave outputs generated by a computer.

An initial flow state was established as follows. At first, azimuthal rotation was
imparted to the system. Once the desired azimuthal Reynolds number ReΩ was
reached, the flow was allowed to approach a steady state by holding the rotation rate
fixed for approximately 90 viscous time scales (Weisberg 1996) where the viscous time
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scale, tν , is defined as

tν =
d2

ν
, (2.5)

and amounts to about 25 min or 375 rotations of the inner cylinder. Axial motion
was then imparted. The desired initial axial Reynolds number Reax (the starting point
of the parametric cut) was known beforehand. To find the location of the resonance
horns, a one-parameter cut at constant ReΩ was performed at 16 almost equally
spaced intervals in Reax . The path of increasing Reax was chosen so as to have a
reasonable chance of passing through a wide resonance horn (and thus locate a region
of frequency-locking, as will be explained below) and the step-size was chosen to be
small, typically �Reax = 0.4, achieved by increasing the axial forcing frequency. A
cut that is too ‘high’ in the resonance horn may enter a chaotic region (as adjacent
horns may have interacted) while a cut that is too ‘low’ may not reveal frequency-
locking since the horn in its early stages of growth may not produce signals strong
enough to quantify the dynamics present within it. Thus, the cut location and the
step-size were chosen through trial and error, as no prior knowledge about the horn
development was available. After each settling and data acquisition period, the axial
Reynolds number was increased abruptly by 0.4 (the effects of such a small sudden
finite change in rotation rate are not known, but are assumed to be negligible) and
the settling and data acquisition process was repeated until the parametric cut was
complete.

2.3. Data acquisition and processing

All the quantitative data were obtained using Kalliroscope flow visualization. The
flow was illuminated through a ring lamp placed just above and in front of the outer
cylinder. This lamp location produced a slight axial gradient in the grey-scale value of
the images. Although this gradient could be reduced by placing a similar light source
at the bottom of the apparatus, a significantly reduced light contrast resulted. Since
our principal objective was to study the temporal characteristics of the flow pattern,
a high degree of contrast was considered to be more important than the slight axial
gradient in the image brightness.

All the images were obtained using a Panasonic WV-BD400 CCD camera. The
camera, with a resolution of 646 × 496 pixels, was placed sufficiently far away from the
apparatus so that the axial field of view typically covered ten pairs of vortices and so
that the image of the outer cylinder was just within the horizontal field of view. This
location gave sufficient axial resolution for accurate axial wavenumber measurement
and sufficient resolution in the temporal (horizontal) direction. The maximum signal
to noise ratio possible was 1024:1 since the CCD camera was a 10-bit camera. The
camera was triggered through a square wave. Typical frequencies of interest were
about 1–2 times the axial forcing frequency, that is, approximately 0.2 Hz. It was
deemed that 50 points per cycle would provide adequate temporal resolution, and
the image acquisition rate, fgrab, was set to 10 Hz. To resolve the power spectrum,
4096 images were obtained per data point, and so �f = fgrab/N = 0.00244.

Multiple snapshots of the flow were acquired using a digital frame-grabber card. A
one pixel thin central slice was extracted from each snapshot. These were then placed
in chronological order to form a ‘stack.’ The slice extraction process is illustrated in
figure 2 and a subsequent sample stack is shown in figure 3.

In each stack, the vertical direction represents axial location and the horizontal
direction represents time, since each slice represents the flow pattern at a fixed point
in the flow, but separated in time by a small constant time delay of 0.1 s. Because of
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Figure 3. A stack formed by chronologically accumulating a thin one-pixel slice from
successive flow snapshots over a period of about 90 s or about six forcing periods Tf .
Horizontal (temporal) cuts through the stack generate raw grey-scale time series.

the high number of images (about 100 for each forcing cycle), the stack contains high-
frequency information on the flow dynamics. A sample stack, obtained for azimuthal
and axial Reynolds numbers of 244 and 65.0, respectively, is shown in figure 3.

The time series of the grey-scale value at a fixed physical point in the flow was
obtained by extracting a horizontal cut through the stack, corresponding to the
dashed line in figure 3. The power spectrum of the time series verified that an axial
gradient in the grey scale (originating from the lighting) did not, as expected, affect the
temporal properties of the time series. The power spectrum revealed the underlying
frequency components, while a phase portrait and subsequently a Poincaré map were
constructed. A rotation number plot, illustrating the variation in rotation number
along a one-parameter cut through three-dimensional parameter space, was ultimately
generated. The rotation number (the ratio of the bifurcation frequency to the forcing
frequency) describes the dynamics of the bifurcation (see § 4.4); it is used to identify
the existence of frequency-locked regions (resonance horns), the growth of these horns
with increasing distance from the critical surface, whether the horns interacted and
to consequently identify regions of quasi-periodic flow.
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The axial–azimuthal wavenumber development was captured using four Polaroid
digital cameras spaced equally around the apparatus. The cameras were triggered
simultaneously and the four image segments were concatenated to form a complete
surround image. The survey consisted of fixing the azimuthal Reynolds number and
increasing the axial Reynolds number. Each value of the axial Reynolds number
constituted a single data point. Once the flow had reached steady state at the required
axial Reynolds number, ten sets of surround images were obtained at equally spaced
values of increasing Reax . Typically, a step size of �Reax = 10 was chosen. This was
repeated for a number of different rotation rates.

In the dynamical study, the region investigated was necessarily small since quasi-
periodic transitions appeared to be limited to a relatively narrow region (Marques &
Lopez 2000). The increments in Reax were commensurately small to obtain adequate
spatial resolution in locating and identifying the resonance horns. The spatial study
of the postcritical spatial behaviour, however, examines a much larger region of
parameter space (the entire region above the critical curve in figure 11). The maximum
span of Reax being investigated was approximately 100, and so larger increments in
Reax of 10 were chosen. The postcritical region was mapped out by performing cuts
in the direction of increasing Reax at fixed ReΩ . Along each cut, ReΩ was fixed and
Reax was increased in steps of 10. Once a subcritical flow state had been reached,
the cut was terminated. The rotation rate was then increased by a prescribed amount
and another constant ReΩ cut was performed. This procedure was continued until
the entire postcritical region had been mapped.

The axial wavenumber was determined from a one-pixel thin axial slice of the flow
while the azimuthal wavenumber was acquired from the composite surround image.
A contour plot of the axial–azimuthal wavenumbers was used to determine whether
the wavenumber changed very sharply close to the Neimark–Sacker bifurcation, as
was suggested by the analysis of the same flow (Marques & Lopez 2000).

The azimuthal wavenumber near criticality is difficult to determine accurately
because the waves on the vortex structures have small amplitude. The axial
wavenumber measurement is subject to a number of sources of error. At large
Reax , isolated inhomogeneities may occur and lead to a slight disruption in the axial
periodicity. Such images were discarded. Furthermore, near the critical surface, the
vortices are weak and only a portion of the axial window may contain vortices
of sufficient strength. The vertical extent and corresponding FFT window must be
correspondingly reduced to include only axially periodic structures. Finally, three
flow snapshots were acquired at random times at any given Reynolds number and
used to obtain an average axial wavenumber. This approach assumes that k does not
vary with time at a given flow setting and is based on the belief that although the
dynamic competition between the forcing and rotation leads to a time-varying fluid
transfer between vortex pairs, this does not affect the axial wavelength of the flow
structures, merely the growth rate and, hence, the vortex core diameters. (Note: we
make measurements only when the Taylor spirals are fully developed, and find that
the peak axial wavelength does not exhibit time variations.)

3. Fundamentals of the transition
3.1. Analysis of the base flow

The base flow consists of a superposition of steady circular Couette flow (CCF) and
time-periodic annular Stokes flow. The fluid motion is thus time periodic (with the
period of the forcing) and three-dimensional; we refer to this flow state as helical
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Figure 4. Voltage time series from the LVDT obtained over about three forcing cycles.

Couette flow (HCF). In HCF, the streamlines at any instant in time are helical in shape
and no vortical structures are present. As the axial flow component increases relative
to the rotational component, the helical path becomes less ‘compressed.’ Although
the flow is time-periodic, the Kalliroscope visualization technique shows a flow that
appears steady in time since the shear stress distribution is uniform throughout the
flow. Note that in the base flow, the signal-to-noise ratio was 1.9 %, which about the
upper limit for generating accurate Poincaré maps.

It is important to examine the mechanical precision of the forcing, in particular
the temporal ‘purity’ of the Scotch-yoke forcing mechanism. According to Swift &
Wiesenfeld (1984), the precise nature of the temporal forcing can interact with the
spatial symmetries present in the system, which in turn determine which bifurcations
may or may not take place at any stage. To study this question, the time trace of
the forcing motion was studied using a linear variable differential transducer (LVDT)
attached to the top of the cylinder. Figure 4 illustrates the voltage time series from
the LVDT.

The figure clearly shows that the voltage signal has one dominant frequency
component (corresponding to the axial forcing frequency), but that it is not purely
periodic. It appears that the axial motion is smoother during the unidirectional parts
of the cycle than at the extremes, where the cylinder changes direction of motion.
Nevertheless, an analysis of the power spectrum revealed that these signals are small
in comparison to the forcing signal; the strength of the first harmonic is only about
2% of the main forcing signal.

Although this component is very small, its effects on the flow are difficult to
predict. Marques et al. (2002) consider how bifurcation diagrams and sequences are
altered in the presence of small perturbations that affect existing symmetries in the
system. The particular symmetry in question is the glide-reflection symmetry. This
symmetry, denoted by S, is a reflection about the plane orthogonal to the cylinder
axis with a simultaneous time translation of half a period, and satisfies the property
S2 = I , since applying the symmetry argument twice in succession leads to a return
to the original flow state. According to the results of Swift & Wiesenfeld (1984),
if the forcing is not purely harmonic in our system, then this symmetry is broken.
If the forcing is purely harmonic, period-doubling bifurcations may not occur as
the primary bifurcation. If this particular symmetry is destroyed, however, period-
doubling bifurcations may subsequently occur. Marques et al. (2002) analysed the
bifurcation properties of this system while considering non-harmonic axial oscillations
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of the form W (sin ωf t + ε sin 2ωf t) where ε is a measure of the imperfection of
the forcing. Their preliminary results suggested that with ε = 0.02 the bifurcation
diagrams did in fact change, and in particular, certain branches lost symmetry while
other regions (in which specific dynamical structures existed) grew or reduced in size.
Their value of ε, 0.02, is (coincidentally) the same as that observed in this facility, and
so it may be that imperfections in the driving signal will have some small (though
unquantifiable) effect on the dynamics observed in the experiment.

3.2. Measurement of the transition Reynolds number

The measured transition Reynolds number depends on the particular detection
analysis technique employed. According to Benjamin & Mullin (1981), the first
transition is sudden in an infinite aspect ratio system, but gradual in a finite aspect
ratio system, where Eckman cells (of the order of the gap width) exist at the endwalls
for all non-zero rotation rates. The rest of the annulus may be considered to be (at
least approximately) two-dimensional. As the rotation rate is increased, the first visual
appearance of Taylor vortices typically occur below the theoretical critical value. In
the experiments of Cole (1976), Taylor cells first appeared at speeds as low as 70 %
of the expected critical rotation rate. The cells generally form at the endwalls and
progress toward the centre of the test section with increasing rotation rate. Cells may
also be seen at sporadic locations elsewhere in the annulus.

The method used in this study was identical to that used by Weisberg et al. (1997).
A central axial strip was captured and digitized at each rotation rate, and the standard
deviation, σ , of the axial grey cale distribution was found. This procedure was repeated
from subcritical to supercritical rotation rates, in increasing and decreasing directions.
The standard deviation was then plotted against rotation rate and a curve fit obtained
for the data. The curve fit was of the form σ = A + B tanh((ReΩ − C)/D) and the
constants A, B, C and D were determined through a least-squares error analysis. The
critical rotation rate was defined as the rotation rate at which the slope of the curve,
dσ/dReΩ , was maximum, that is, at the (only) point of inflection of the curve. Via
this method, ReΩ,crit = C.

In Weisberg’s study, the primary transition is between an axially uniform flow and
a flow with axial periodicity, as it is in the present work. Our flow, however, differs
in one crucial respect. A dynamic competition exists between the axial and rotational
cylinder motions: the azimuthal rotation encourages Taylor cell growth while the axial
oscillation suppresses them. Thus, the instantaneous vortex growth rate depends upon
the relative magnitudes of the two Reynolds numbers. While the actual transition
Reynolds number does not depend on this ratio, the visual observation of vortices
does: even beyond criticality, vortices will not be seen unless their growth rate is large
enough so that they are visually prominent. The structures must have grown for a
sufficiently long time in order to be visible. Thus, to be consistent, snapshots of the
flow were obtained and their corresponding axial standard deviations calculated at
the point of zero instantaneous forcing amplitude, that is, at the extremum of the
forcing, when Reax is instantaneously zero.

3.3. Character of the primary transition

The primary transition can be subcritical or supercritical. Subcritical transitions
are hysteretic while supercritical transitions are not. Hysteretic transitions are more
difficult to measure experimentally owing to the influence of the experimental path
on the transition Reynolds number. In the absence of forcing, the primary transition
to regular axisymmetric Taylor cells is known to be supercritical. In the axially forced
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Figure 5. Axial grey scale standard deviation σax versus azimuthal Reynolds number ReΩ .
Rotation rate �, increasing; �, decreasing. ———, σaxU = 23.4 + 4.60 tanh((ReΩ −
239.00)/7.5); —··—··—, σaxD = 23.6 + 5.00 tanh ((ReΩ − 239.04)/8.0). The essentially equal
upward and downward transition values confirm this transition to be supercritical.

case, the character of the base flow is spatially and temporally different and it is
unclear how this affects the nature of the primary transition.

A procedure similar to that used to measure the critical rotation rate was employed.
The azimuthal Reynolds number was increased in steps of one from a value below
criticality to a value above criticality, corresponding to passage through a complete
transition. The azimuthal Reynolds number was then reduced to the starting value.

Figure 5 illustrates the standard deviation measurements for increasing and
decreasing rotation rates. Prior to the formation of any vortices, the standard deviation
is essentially constant and equal to approximately 18.8. At ReΩ ≈ 220, the standard
deviation begins to rise, with the main increase occurring at ReΩ ≈ 230. At this point,
wavy vortices are just visible at random locations in the flow and small increases in ro-
tation rate produce measurable changes to the strength of the vortices. At ReΩ ≈ 245,
the curve starts to flatten out, essentially becoming constant at about 250. At this value
of ReΩ , the entire annulus is filled with vortices and growth of the vortices has ceased.

The critical Reynolds number was found to be 239.0, which agrees with the
theoretical Floquet value of 244.0 given by Marques & Lopez (1997) to within about
2%. The r.m.s. uncertainty in ReΩ,crit is 0.72 % which, based on a transition Reynolds
number of 244.0, gives an uncertainty of �ReΩ,crit =1.74. This estimate incorporates
only contributions due to random errors; systematic errors (such as mechanical
vibration, eccentricity effects, and non-harmonicity of forcing), which are difficult to
account for, will increase the uncertainty in the measurements.

According to figure 5, the critical rotation rate in the increasing and decreasing
directions is 239.0 and 239.04, respectively, that is, they are equal to within
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(a) (b)

Figure 6. Flow snapshots of Modes I and II, respectively, for slightly postcritical Reynolds
numbers. (a) Mode I; Reax = 79, ReΩ =247. (b) Mode II; Reax =91, ReΩ = 280.

experimental error. Apparently, the primary transition occurs without hysteresis and is
thus supercritical in nature. This observation may be partly explained by considering
the base flow. In the unforced case, the base flow is purely azimuthal while in
the forced case it also has a time-periodic axial component. The two components,
however, essentially superpose prior to the primary bifurcation, at least with regard
to their effect on the nature of subsequent transitions. The transition in the forced
and unforced cases is driven by the inner cylinder rotation destroying the radial force
balance. The presence of a time-varying axial component should not affect this radial
force balance. Thus we think of the base flow as the superposition of classical Couette
flow, which has a supercritical primary transition, and a time-varying Poiseuille flow
which does not undergo any transition in this parameter regime. Since only the
Couette flow component undergoes a transition, the nature of its transition should be
the determining factor. Furthermore, with the primary transition being supercritical,
the location of the transition surface and the sought-after resonance horns are not
expected to depend upon the actual parametric path chosen and so we are free to use
any path we desire.

3.4. Flow snapshots and comparisons to the unforced case

Snapshots of the flow at slightly postcritical and highly postcritical Reynolds numbers
are shown in figures 6 and 7. The qualitative flow structure changes drastically as
the rotation rate rises beyond the critical rotation rate. Two different flow states,
which we refer to as Mode I and Mode II, are shown, corresponding to the points
indicated in figure 9. Figure 6 is for a slightly postcritical rotation rate (1.05ReΩ,crit )
while figure 7 is for a highly postcritical rotation rate (1.50ReΩ,crit ). Both modes
consist of inclined wavy Taylor cells. Mode I contains one azimuthal wave per vortex
spiral while Mode II contains two waves per spiral (observed from surround 360◦

views). Typically, Mode I exhibits larger axial wavelength and the maximum spatial
inclination of the spirals is less than in Mode II. The random visual defects visible in
figure 7 are due to interactions between individual vortex spirals.

As the rotation rate increases, the waviness appears abruptly at local points in the
flow. As mentioned previously, the critical rotation rate is defined as the rotation
rate at which the growth rate of axially periodic structures, or specifically the axial
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(b)(a)

Figure 7. Flow snapshots of Modes I and II, respectively, for highly postcritical Reynolds
numbers. (a) Mode I; Reax =79, ReΩ = 280. (b) Mode II; Reax = 91, ReΩ = 320.

t = 0 Tax/8 Tax/4 3Tax/8
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Figure 8. Snapshots of the bifurcated flow in Mode I separated by equal time intervals. Eight
snapshots are shown over one complete axial forcing period for flow parameters Reax = 79
and ReΩ = 250.

grey scale standard deviation, has reached a maximum value. Owing to the dynamic
competition between the azimuthal rotation and axial oscillation, the instantaneous
flow structure varies with time for a given set of (Reax, ReΩ ). The maximum time
rate of growth of the Taylor cells occurs when the instantaneous forcing amplitude is
zero, that is, at the extrema of the forcing, since the axial oscillations suppress Taylor
cell growth. Thus, during the early stages of mode formation, vortical structures
are not initially visible throughout the entire forcing cycle; a higher rotation rate is
necessary to overcome this damping. Figure 8 illustrates the evolution of the Mode
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I flow state at eight periodic intervals during a single forcing period. Owing to the
frequency-locked nature of the flow, the specific phase of the cycle in the figure is
not important; the flow will eventually repeat (with a period greater than the forcing
period Tax).

The point when the growth rate of the vortical structures reaches a maximum value
coincides, in practical experience, with the vortical structures essentially being visible
for all time. The increase in rotation rate from when the point vortices are first seen
to the point of complete vortex formation is larger for Mode II; this is probably
due to the larger forcing amplitude involved and hence the relatively shorter time
available for the waviness in Mode II to grow to a sufficiently large amplitude. Within
one complete forcing period, the instantaneous inclination of the Taylor structures
also varies with time. The maximum inclination, with respect to the horizontal,
occurs when the forcing amplitude has reached its maximum instantaneous value,
corresponding to the mid-point of the axial oscillation. The waves occur at the same
azimuthal position in all vortices and travel in phase with one another.

The physical vortices are defined by a vortex core size and a core-to-core separation;
both parameters are measured from the axial grey-scale distribution. The core-to-core
separation is defined as the axial wavelength of the grey-scale distribution. The vortex
core size is obtained by examining a plot of the axial grey-scale distribution; the edges
of the vortex core are defined by points where the Kalliroscope flakes are ‘edge-on’
to the camera, that is, the grey-scale image reveals a dark edge. Note that while
the conclusions made in the present work do not require quantitative measurements
of the vortex core size and a core-to-core separation, these concepts are useful in
comparing the various flow states in a qualitative manner.

The vortex core size and core-to-core separation vary azimuthally and temporally
for a fixed point in the flow. This arises because of the time-variation in instantaneous
forcing amplitude, which results in a cyclically varying growth rate driving both length
scales. While the character of the transition, that is, its supercritical nature, is identical
to that in the unforced case, the spatial development of the flow structure beyond
the primary bifurcation differs greatly. In the unforced case, a sequence of well-
defined transitions occur that lead to stable structures with increasing degrees of
spatio-temporal complexity. However, the structures are still very regular and ordered
(at least up to 10 times the critical rotation rate). In the forced case, this is not
so. A relatively small increase in the rotation rate beyond the primary bifurcation
leads to a rapid loss in flow regularity manifested by a complete and gradual loss
in axial and azimuthal periodicity. Local regions of regular waviness develop and
these become separated by regions of random waviness and chaotic flow. In the
axial direction, it appears that random vortex deformations and interactions regularly
occur, as is evident in figure 7. In effect, the axial forcing appears to destabilize the
non-axisymmetric wavy modes, as suggested by Marques & Lopez (2000).

4. Analysis of temporal dynamics
4.1. Two-dimensional projection of critical surface from numerical simulations

The Floquet analysis of Marques & Lopez (1997) showed that, except for a small
window in parameter space, n= 0 is generally the most unstable azimuthal mode in
the presence of axial forcing (n being the azimuthal wavenumber). Generally, the
primary bifurcation leads to an axisymmetric mode that is synchronous with the
forcing, so that no new frequencies are introduced via the bifurcation. However,
within this small window (restricted to small ω and large Reax), the n �= 0 modes
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Figure 9. Critical rotation rate as a function of non-dimensional forcing frequency. Thick
solid lines separate different azimuthal modes and marked contours (65–125) are for fixed
Reax . Dashed lines indicate the tip locus of the horns from where strong temporal resonances
(with ωs/ωf =p/q) emanate (ωs is the secondary bifurcation frequency, and p and q are
integers). Resonance horns 5/3 and 7/4 in Mode I were investigated in detail. Labels a to
i refer to strong resonances 3/2, 5/3, 7/4, 2/1, 9/4, 7/3, 5/2, 8/3 and 11/4. (Reproduced with
permission from Marques & Lopez 2000).

are most unstable and, simultaneously, a new frequency (ωs) is introduced into the
dynamics of the system. This means that ωs and ωf are now both required to describe
the observed dynamics.

The method used to determine the value of ωs assumes that the dynamics can be
fully explained by two independent frequencies and the observed power spectrum (a
sample of which is shown in figure 13). By testing how each dominant peak (these
have been labelled) can be expressed in terms of a linear combination of ωf and ωs ,
the values of ωf and ωs are determined in a straightforward manner.

These primary bifurcations occur for Reax � 68 and ω in between the natural
frequencies of the unforced spiral modes; typically ω ∼ O(10) (Marques & Lopez
2000). Figure 9 shows the critical surface projected onto the (ω, ReΩ,crit )-plane;
the dark lines define bounded islands where the n �= 0 modes are most unstable.
Visualizations of Modes I and II were obtained within these islands at the points
shown by the black dots in the figure. We pay particular attention to the Mode I flow
dynamics in the vicinity of the 5/3- and 7/4-resonance horns.

The flow modes are described by an integral azimuthal wavenumber n and a
(generally) non-integer axial wavenumber k. As described earlier, the axial wavelength
λ of the spiral vortices is obtained from the axial grey-scale distribution. The axial
wavenumber is defined as k = 2π/λ. The primary critical surface shown in figure 9
was obtained by numerically determining which (n, k) mode was most unstable for a
given (Reax, ω), that is, which mode bifurcated at the lowest rotation rate. Outside the
regions labelled I and II the primary bifurcation was axisymmetric and synchronous
with the forcing. Inside regions I and II the primary bifurcation was non-axisymmetric,
and a pair of complex conjugate eigenvalues, related to the linearization of the solution
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Figure 10. Slicing the primary critical surface (obtained from data contained in Marques &
Lopez 2000) with the plane of investigation (Reax = 9.525ω). The result is a critical curve in
this plane. As shown, the selected curve passes through the n= 1 region and just misses the
corner of the n= 2 region.

losing stability and to the resulting bifurcated dynamics, simultaneously crossed the
unit circle as ReΩ was raised. This leads to a Neimark–Sacker bifurcation where
quasi-periodic and frequency-locked flow states arise. While figure 9 indicates the
extent of the critical surface, what temporal resonances (defined by the rotation
number ωs/ωf ) can be expected, and from which points on the critical surface the
resonance horns emerge (that is, the tip locus of the horns), it does not indicate the
shape and size of the resonance. This information must be provided by experiment.

4.2. Reconstruction of the three-dimensional primary critical surface

Figure 9 illustrates the projection of the critical surface onto the (ω − ReΩ,crit )-
plane. When viewed in three dimensions, the critical surface appears as in figure 10.
The critical surface is curved and slopes in parameter space. The critical rotation
rate increases with axial forcing amplitude and decreasing forcing frequency (the
latter increases the influence of the axial oscillations by increasing the extent of the
oscillatory Stokes layer). The portion of the critical surface where non-axisymmetric
modes bifurcate is only about 2% of the total critical surface area illustrated in
figure 10. This supports the general consensus that such observations are rare in fluid
mechanical systems. Above the enclosed regions indicated by n= 1 and n= 2 lie the
frequency-locked and quasi-periodic regimes being investigated.

In our apparatus, Reax and ω are not independent but linearly coupled, although
the constant of proportionality can be changed discretely to allow independent
explorations of Modes I and II. The observations presented here are, however, all
focused on Mode I, and we are restricted to the vertical plane Reax = 9.525ω. The
result of this intersection is a curve in two dimensions denoted by the thick black line
in figure 10.

Figure 11 illustrates the critical curve projected onto the (Reax, ReΩ )-plane, that is,
when projected onto the dark vertical plane in figure 10. Below this curve, the base
flow is helical Couette flow (HCF). Above the curve, the bifurcated flow structure
will, for a given cylinder motion history, depend on the magnitudes of the axial
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Figure 12. Part of the time series of the grey-scale intensity at a fixed point in the flow for the
parameters (65.0, 244). The time period between successive slices is 0.25 s and the time series
lasts for about 120 s.

and azimuthal Reynolds numbers. In the shaded region we expect to find transitions
leading to quasi-periodic and frequency-locked flow states (the boundaries of the
shaded region are schematic only, since they are not known a priori). Our objective
is to search for resonance horns within this region by performing multiple high-
resolution cuts throughout the shaded region, each at a different fixed ReΩ . Although
the regions labelled n= 1 and n= 2 are schematic only, their presence is useful in that
it provides an illustration of their shape and size and how they relate to the plane of
investigation.

4.3. Sample results for (Reax =65.0, ReΩ = 244)

The point (Reax = 65.0, ReΩ =244) corresponds to a location on the inside edge of the
7/4-resonance horn. Typical time traces of the grey-scale intensity with time, power
spectra, phase portraits and Poincaré maps are shown in figures 12 to 15.

The time trace corresponding to (65.0, 244) is shown in figure 12, and the spectrum
(figure 13) shows many peaks. The first nine peaks have been identified as comprising



Dynamics in Taylor–Couette flow 19

ωs – ωf

2ωs – 2ωf

ωs + 2 ωf

ωs + ωf

ωf
ωs

2ωf

2ωs

10–1

10–2

10–3

10–4

0 0.2 0.4 0.6

P
ow

er
 s

pe
ct

ra
l d

en
si

ty

Frequency, Hz

Figure 13. Power spectrum of the time series obtained for the point (65.0, 244). The significant
spectral peaks can be identified clearly as linear combinations of the forcing frequency ωf and
bifurcating frequency ωs .
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Figure 14. Phase portrait of the light intensity V (t) and the delayed light intensity V (t − τ )
projected onto the (V (t), V (t − τ ))-plane, constructed from the time series for a point in the
7/4-horn.

the forcing and bifurcating frequencies (and their harmonics), and linear combinations
of the two. The amplitudes vary considerably, and the contributions from other sources
such as background noise cannot be readily identified. Although not shown, the time
series for subcritical flow showed little noise (less than 0.5 % of the mean level) around
a constant grey-scale level, as no vortical structures were present in the flow.

A simple technique for producing phase portraits and Poincaré maps in experi-
mental work is to use ‘delayed coordinates’ (Packard et al. 1980; Takens 1981) to
generate one or more time series from an original time series which is useful when
two or more independent quantities are not available. Figure 14 is a two-dimensional
delay reconstructed phase portrait projection of the time signal. Here, V (t) is the
original light intensity at one point in space and V (t − τ ) is the time-delayed signal;
thus only one time-delayed signal is used here. The time delay, τ , for these data is
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Figure 15. Poincaré map for the frequency-locked phase portrait in figure 14 (with almost the
same time delay as in figure 14.) In (b), the first ten points only are shown. In (a), the projection
of all intersection points (obtained by periodically strobing the entire phase trajectory) onto
the plane of projection is also represented.

Tf /10 where Tf is the forcing period. The particular fraction of the forcing period
used for the delay (in this case a tenth) that generates the clearest phase portrait and
Poincaré map is a function of signal quality and duration and must be determined
partly by trial and error.

Each pair of points (from the original and time-delayed series) constitutes one point
on the phase portrait. Successive points have been joined together so as to suggest
time evolution on the portrait.

Figure 14 represents the projection of the phase portrait onto the (V (t), V (t − τ ))-
plane. The figure shows the timewise evolution of the portrait over an interval of
approximately 40 forcing periods. Many of the points appear to lie inside a vaguely
defined central ‘cluster’. The phase trajectory typically spends most of the time inside
the cluster region, but occasionally ‘comes out’ for a very brief period before re-
entering. While it is difficult to see from the figure, it appears the phase trajectory
weakly precesses about a central core. Approximately 50 % of the points are situated
inside the tube-like cluster, which provides an indication of the time the trajectory
spends there.

In order to generate Poincaré maps, we periodically strobe the phase trajectory
every forcing period. Because of the harmonic nature of the forcing, strobing the
phase trajectory with the period of the forcing becomes equivalent, in this particular
case, to extracting the values on the phase trajectory whenever the instantaneous axial
Reynolds number reaches a particular fixed value. A sample Poincaré map is shown
in figure 15. The map is not for precisely the same data as shown in figure 14, but
since the time delays used in figures 14 and 15 are very similar and we are not close
to a bifurcation point, the observed dynamics are expected to be very similar.

Because the Poincaré map uses only about 1 % of the number of points in the
phase portrait, the underlying dynamics are often clearer. In this case, the Poincaré
map reveals the existence of four isolated clusters. Although we may expect to
see well-defined points instead of clusters, the noise in the signal prevents a more
precise collapse. The trajectory of the strobed signal is nevertheless clear. It performs
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Figure 16. Phase portrait, projected onto the (V (t), V (t − τ ))-plane, constructed from the
time series for a point believed to reside in the quasi-periodic regime.

clockwise loops, successively going from one cluster to the next, which is consistent
with the phase portrait.

A key feature of the Poincaré map is the systematic ordering of the points. As may
be seen in figure 15, the points labelled 1 to 10 chronologically trace out a clockwise
looping pattern. A range of time delays, from Tf /5 to Tf /20, were investigated. In
some cases even shorter time delays were necessary since the clarity of the Poincaré
sections was sensitive to the choice of time delay. Typically, time delays of about Tf /12
produced the clearest indication of orderly structure. This trial-and-error approach
to finding the optimum time delay is required for two reasons: (i) the estimate of the
forcing frequency ωf (and hence strobing period) is subject to error; (ii) the strobing
period (even if known precisely) will generally not span an integral number of data
points, so that interpolation must be used to calculate the strobed value. A typical
grey-scale time series (figure 12) shows that the jump in grey-scale between any two
consecutive data points can be quite large: 50 is a typical value, whereas jumps as
high as 100 have been recorded often enough to be significant.

Figure 16 shows the results for a flow state believed to represent a quasi-periodic
attractor. A slight difference from the frequency-locked trajectory of figure 14 is that
this quasi-periodic trajectory does not display as clear a looping path, and the central
cluster region appears more diffuse. The apparently quasi-periodic trajectory does not
display the clear orbits or precessions evident in the frequency-locked portrait. Instead,
the projection appears to display a degree of ‘axisymmetry’, or lack of directional
preference.

4.4. Calculation of rotation number

The power spectrum and Poincaré map are both required in order to compute
the flow rotation number, defined as ωs/ωf . Depending on whether the Poincaré
section shows clustering (suggesting frequency-locking) or no clustering (suggesting
quasi-periodicity), the method used to compute the rotation number is different.

Since the forcing frequency is known, peaks corresponding to this frequency and its
harmonics may be readily identified. The problem arises in identifying the bifurcation
frequency. The Floquet analysis predicts the rotation number at any point on the
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Figure 17. Phase portrait for a quasi-periodic state.

critical surface (figure 9). Above the critical surface, however, the rotation number is
unknown, although the existence of resonance horns that emanate from special points
on the surface is established. Consider, for example, the 7/4-horn. If four clusters are
identified in the Poincaré map, the rotation number ωs/ωf =p/q must be such that
q = 4, that is, the number of clusters is equal to the denominator of the ratio p/q .
When q = 4, we may be near the 7/4-horn. If the spectrum has a peak at ω =(7/4)ωf ,
then we may be situated in the 7/4-horn. In addition, if significant peaks in the power
spectrum can be expressed as linear combinations of ωs and ωf , then the correct
rotation number has been found.

If the Poincaré section does not reveal isolated clusters, we do not expect to have
frequency-locking (at least as far as we can tell with a signal of our quality, which
possesses a signal:noise ratio of approximately 500:1). Instead, we are either in a
chaotic regime (far above the critical surface beyond the breakup of the T 2) or in
a quasi-periodic regime where the T 2 is still intact, but where ωs/ωf is ‘practically’
irrational. In either case, the lack of visible structure means that the Poincaré section
is not helpful in determining the rotation number, and only the power spectrum can
be used. If we are in a quasi-periodic regime, we expect that we must be located
in the region between adjacent frequency-locked resonance horns of known rotation
number (Bergé et al. 1984), and we know the range within which the frequency ωs

must lie. The ratio ωpeak/ωf is calculated for the peaks close to the forcing frequency
peak. When the value of ωpeak/ωf is equal to a value within the allotted range, we
take that value to be the rotation number.

If the experiment were noise-free or had very little noise, the Poincaré section
for a quasi-periodic attractor would reveal a closed ring. Figure 17 represents the
three-dimensional trajectory of the grey-scale value with time; the projection of
this trajectory onto the (V (t), V (t − τ ))-plane, that is, its Poincaré map, is shown
in figure 16. The figure reveals a cluster with no structure that is more suggestive
of a random phase trajectory, as if the data come from the strobing of a chaotic
attractor. However, it is our belief that these data actually represent a quasi-periodic
attractor and the lack of structure is because of the presence of experimental noise.
For example, because of small but measurable temperature fluctuations, the viscosity
is continually changing with time, and the three primary dimensionless parameters
move within a small three-dimensional volume during the data acquisition process.
As a result, the dynamics are continually changing, drifting slightly with time. Within
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the resonance horns, this is not a problem (as long as we are not close the edge of the
horn) since the flow responds to the changing parameters in such a way as to keep
the rotation number fixed (the dynamics are ‘locked’). Thus, within a resonance horn,
a small ‘wandering’ of parameters is acceptable. Outside the resonance horn, however,
any small wandering will alter the temporal characteristics of the flow since we are
effectively sampling a set of different flows, each with its own rotation number. It is
conceivable that this sampling could manifest itself as the introduction of appreciable
noise on an otherwise quasi-periodic attractor; enough noise, perhaps, to mask the
expected ring-like appearance of the strobed section.

4.5. Power spectra and Poincaré sections from a parametric cut

To determine how the dynamics evolve above the critical surface, parametric cuts
at fixed ReΩ were performed. At each of the 16 points (along increasing Reax),
a power spectrum and Poincaré map were generated. The rotation number at
each point was then calculated and plotted against position in parameter space
to reveal the spatial development of resonance horns. Figures 18 and 19 illustrate
the results for a parametric cut at ReΩ = 244. A similar cut at ReΩ = 246 was also
performed, but for brevity its sequences are not shown (see Sinha 2003 for further
details).

While the relative strengths of the peaks in the power spectrum are seen to
change with forcing amplitude, changes in the Poincaré section typically provide more
information. Consider the variation with Reax . At Reax = 65.0, the Poincaré trajectory
consists of four clusters with about a 5 % scatter in each. The plot, coupled with
the power spectrum, reveals the rotation number at this point to be rational and
equal to 7/4. At Reax = 65.4, the clusters have become more spread out and two
of the clusters have almost merged into one; some of the organization evident at
Reax = 65.0 is missing while a closed loop characteristic to the map is retained. At
Reax = 65.8, drastic changes result. The isolated clusters have disappeared and all
organization has been lost. Tracking the location of the peaks at ωf and ωs in the
spectral plot, the rotation number is calculated to be approximately 1.73. This is
‘experimentally’ irrational (or a high-order rational such as 173/100) and, bearing
in mind the potential effect of noise on quasi-periodic sections, the attractor at this
point is believed to be a quasi-periodic T 2. This type of section topology continues
until Reax = 66.6. Tracking the rotation number, we see that it reduces to a value
of 1.67 when Reax = 66.6. This value is very close to the next low-order rational
(5/3), but the large degree of disorder prevalent in the Poincaré section is taken to
indicate that the point does not lie within a resonance horn. Then, at Reax = 67.0,
substantial organization is seen to return. Three individual clusters can be identified.
Via the measured location of the spectral peaks, the rotation number is calculated
to be 5/3. Thus, it appears that we have passed through a quasi-periodic regime
(beyond the 7/4-resonance horn) and the smaller resonances it contains, and entered
the adjacent frequency-locked 5/3-horn. Moving further into the horn, at Reax = 67.4,
the Poincaré section topology is clearer. The presence of three compact clusters is
striking, confirming that we are still within the 5/3-horn. To within the uncertainty
introduced by the step size in Reax (�Reax = 0.4), the resonance horn edge exists at
Reax = 68.6.

The Poincaré sections at Reax of 67.8, 68.2 and 68.6 do not display as clear an
ordering as at Reax = 67.4. The clusters have become more spread out. Tracking
the point-to-point movement on an individual section helps to clarify the topology
when the clusters begin to spread out. The ratio ωs/ωf is still locked at 5/3 in
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Figure 18. Poincaré maps for Reax = 65.0 to 67.8, at constant ReΩ = 244.0.

the power spectrum and so we have enough evidence to label these points as lying
within the 5/3-horn. At Reax =69.0, disorder and a lack of clustering suggest that we
have crossed through the 5/3-horn and have entered another quasi-periodic regime.
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Figure 19. Poincaré maps for Reax = 68.2 to 71.0, at constant ReΩ =244.0.
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Figure 20. Rotation number plot for two parametric cuts at ReΩ = 244 and 246. The data
for ReΩ =244 have been shifted for clarity.

The clusters remain topologically similar until the end of the cut at Reax =71.0,
and the rotation number as computed from the power spectrum reduces apparently
monotonically from one location to the next. The smaller resonances contained in
this region are not clearly identified at our experimental resolution.

The parametric cut at ReΩ = 244 has thus identified regions of frequency-locking
and apparent quasi-periodicity, and located their respective boundaries. This global
behaviour agrees well with the known existence of alternating bands of frequency-
locking and quasi-periodicity in the postcritical regime of a Neimark–Sacker
bifurcation. The cut at ReΩ = 246 confirmed the gradual nonlinear growth of the
horn boundaries.

The experiments did not identify any hysteresis effects at the edge of the horns,
but the step in Reax may have been too large, and the noise level too high. In other
experimental studies, such as Ecke & Kevrekidis (1988), secondary Hopf bifurcations
were identified within individual resonance horns, and attractors were found to
undergo wrinkling and other topological changes. The parametric cuts described here
did not capture any such phenomena.

4.6. Rotation number plot

The data presented in the previous section can be summarized in a rotation number
plot (figure 20). The horizontal (fixed rational rotation number) sections indicate
frequency-locking while the inclined (apparently continuously changing ‘irrational’
rotation number) sections suggest quasi-periodicity. Higher-order resonances in this
regime are not discernible within the experimental resolution. The growth of the
resonance horns with increasing rotational Reynolds number is indicated by the
dashed lines. The 5/3-horn has been fully captured while only part of the 7/4-horn
has been captured. Owing to the nonlinear shape of the horns in parameter space,
it is not possible to extrapolate how they appear with increasing distance from the
critical surface. Figure 21 shows how the Poincaré section changes character for a few
specially selected points on the rotation number plot.



Dynamics in Taylor–Couette flow 27

F/L
200

150

D
el

ay
ed

 s
ig

na
l

Original signal

100

50
50 100 150 200

Q/P
200

150

D
el

ay
ed

 s
ig

na
l

Original signal

R
ot

at
io

na
l n

um
be

r

100

50
50 100 150 200

F/L
200

150

D
el

ay
ed

 s
ig

na
l

Original signal

100

50
50 100 150 200

F/L
200

150

D
el

ay
ed

 s
ig

na
l

Original signal

100

50
50 100 150 200

Q/P
200

150

D
el

ay
ed

 s
ig

na
l

Original signal

100

50
50 100 150 200

1.72

Boundary of
7/4 horn

Boundaries of
5/3 horn

1.66

1.62

1.58

65 67
Axial Reynolds number

69 71

ReΩ = 246

ReΩ = 244
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points in parameter space. For clarity, only a few selected points are shown, F/L, frequency
locking; Q/P, quasi-periodic.

5. Postcritical axial and azimuthal wavenumber: preliminary results
In order to map the spatial development of the system postcritical behaviour, large

regions above the critical curve were investigated, identified by the entire region above
the critical curve in figure 11, from Reax of 0 to 100, encompassing transitions to
quasi-periodic flows (shaded region) and periodic flows (unshaded region). Note that
the study of the bifurcation dynamical properties was restricted to the shaded region
only. Referring to figure 11, we proposed to study the response of wavy vortex flow
to increasing axial forcing (path AB), the response of some non-axisymmetric n �= 0
mode located just above the critical surface to increasing rotation rates (path CD),
and the possible correlation among changes in the postcritical spatial structure and
temporal dynamics.

5.1. Variation of axial wavenumber

The experimentally determined axial wavenumber for the (unforced) transition from
circular Couette flow to Taylor vortex flow is 3.118, in excellent agreement with the
value of 3.129 obtained from Floquet analysis by Marques & Lopez (1997).

For forcing amplitudes up to Reax ≈ 40, the axial wavenumber changes very little;
small decreases are balanced almost equally by small increases. However, for Reax > 40
the trend is markedly different. The axial wavenumber rises rapidly by about 45 %
from Reax = 40 to 80. As mentioned by Wereley & Lueptow (1998), an increased
amplitude of forcing could result in an increased amount of fluid transport between
individual cells, thereby generating direct competition between Couette flow and
Stokes flow. The primary bifurcation in circular Couette flow leads to a flow with
axial wavenumber π while the primary bifurcation in annular Stokes flow has an
infinite wavelength (wavenumber zero), that is, it does not undergo an instability with
finite length scale. Thus, as the axial component increases, it is plausible that the
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connection between the two modes leans more heavily in favour of Stokes flow and
to a reduced axial wavenumber. This occurs to some degree for Reax up to about
40. Why a further increase in the Stokes component appears to initiate a dramatic
rise in axial wavenumber is not clear. Perhaps the two components begin to interact
in a complicated manner with the increasing axial momentum transport, or perhaps
we experience another bifurcation. Further experiments are necessary to resolve this
question.

For Reax up to about 30, there is a generally slow decrease in axial wavenumber
for ReΩ less than about 200. Between ReΩ of 200 and 250, the axial wavenumber
varies unpredictably without any clear pattern, while above ReΩ of 250 it generally
rises monotonically. For Reax equal to 50 and 60, an initial rapid increase is observed,
followed by a gradual reduction to about the initial value of k. However, for Reax of
70 and 80 we observe only a steep rise in k.

5.2. Variation of azimuthal wavenumber

The n= 1 azimuthal mode is not observed in the presence of finite-amplitude forcing.
Any given azimuthal mode is observed for a small interval in azimuthal Reynolds
number only; modes appear and disappear with a change in ReΩ = 10, which also
means that the boundaries between distinct azimuthal modes are known only to values
of ReΩ within ± 10. Furthermore, the effect of a sudden jump in azimuthal Reynolds
number on the existing flow state is unclear. Observations indicate that once a given
wavy mode is established, increasing axial forcing does not reduce the azimuthal
wavenumber. Rather, the amplitude of the waviness in the vortex structures is reduced
until it is virtually undetectable close to the transition surface, typically within an Reax

of 10 above criticality. According to Marques & Lopez (2000), axial oscillations of the
inner cylinder destabilize the non-axisymmetric wavy modes. Our observations suggest
that such forcing leads to the gradual emergence of inhomogeneities within the flow
pattern, which may be interpreted as a physical manifestation of the destabilization
of the vortex pattern. Occasional vortex ‘mis-matches’, appearing qualitatively
similar to vortex dislocations, become more common as the forcing amplitude is
raised.

5.3. Three-dimensional reconstruction of axial wavenumber development

Figure 22 shows the variation of axial wavenumber beyond the primary critical curve
(the contour lines are for fixed axial wavenumber k). Narrow strong variations in axial
wavenumber are observed, with some regions displaying a more pronounced localized
change in k than others. The zone containing the steepest gradients generally occurs
in the upper-right corner of the region of investigation. Comparison with figure 11
reveals that the steepest gradients are thus found near the (expected) boundaries of
the n= 1 region.

Up to about Reax = 40, changes in axial wavenumber are relatively insignificant
compared with other regions. For all Reax in excess of about 50, a rapid rise in
axial wavenumber is evident. However, superimposed on this overall rapid rise are
localized regions where even steeper gradients exist (50 < Reax < 80). Figure 22(b)
shows a close-up of this region.

The figure suggests that the region containing transition to quasi-periodic flow (the
shaded area in figure 11) closely coincides with the region exhibiting steep gradients in
axial wavenumber in figure 22. Indeed, the steepest gradients in k appear to lie near the
boundaries of the Neimark–Sacker bifurcation. This is in accordance with Marques &
Lopez (2000) who state that a feature of this type of bifurcation is the simultaneous
emergence of multiple spatial mode – the nonlinear interaction of which leads to
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Figure 22. Effect of increasing rotation rate on azimuthal wavenumber beyond the primary
transition. The curve drawn in the (Reax , Reaz)-plane is the stability boundary shown in
figure 11. The location of the large gradients observed in (a) and the shaded region in figure 11
correlate very well with each other. The close-up in (b) is obtained when viewed from the far
side of the critical surface.

practically discontinuous or essentially very steep changes in axial wavenumber as
well as discrete jumps in azimuthal wavenumber. The three-dimensional plot reveals
a large rapid rise in k, which nearly coincides with the Neimark–Sacker bifurcation
boundary. It is not possible to determine with certainty whether the rapid rise in axial
wavenumber is actually discontinuous (it would not be in an experiment). It appears
to be continuous in the present experiment, but it should be noted that the jump
size from one point to the next is the same as the interval over which the very large
gradients are observed. A higher-resolution survey is required in order to locate the
span of the jump.

5.4. Spatial changes to the flow structure

Figure 23 illustrates the response of the flow structure to increasing axial forcing.
Figure 23(a) is for zero forcing (Reax = 0) while figures 23(b) to 23(d) are for increasing
forcing amplitude. The interaction between the axisymmetric forcing and the wavy
vortex flow generates a non-axisymmetric flow state. At Reax = 0, we note the regular
appearance of azimuthal waves of high amplitude on the closed vortex rings. A small
but finite amount of forcing, however, leads to a sharp change, localized in space,
in the qualitative structure of the flow; the wavy closed rings break to form open
wavy spirals, leading to a new azimuthal symmetry. This breaking leads to azimuthal
wavenumbers (which represent the number of azimuthal waves per vortex spiral) that
are no longer restricted to integral values from rotational symmetry arguments. The
relaxing effect that this extra degree of freedom brings to the flow is unclear. By
Reax = 40, the amplitude of cell waviness has reduced and local inhomogeneities are
observed. At Reax = 60, we observe an increased vortex spiral inclination and (possibly
fortuitous) reduction in spatial inhomogeneities. The bottom image (maximum axial
forcing) contains a higher axial wavenumber than the top image (zero axial forcing)
which is consistent with figure 22(a). Even for small forcing amplitudes, say Reax = 20,
the vortex structures appear to be slightly inclined. As the forcing amplitude rises,
the amplitude of the cell waviness reduces while the azimuthal wavenumber appears
to be unchanged.
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Figure 23. Surround images showing the effect of increasing axial forcing on wavy vortex
flow. The increasing forcing amplitude breaks the closed rings into open wavy spirals.

6. Conclusions
A Hopf (Neimark–Sacker) bifurcation to a T 2 torus has been observed in axially

forced Taylor–Couette flow. The flow instability results in time-varying open Taylor
spirals at an inclination to the cylinder axis, and this inclination varies sinusoidally
with time. Two bifurcating modes with azimuthal wavenumbers I and II were
identified. The vortex topology of the stable bifurcated flow exhibits strong axial
and azimuthal periodicity. Above the primary transition surface, the axial forcing
rapidly destabilizes the Taylor cells into a spatiotemporally chaotic flow. For both
modes there were no hysteresis effects, implying a supercritical transition.

The temporal dynamics of the flow were characterized through power spectra
and delay-reconstructed Poincaré maps. Depending upon the exact location in three-
dimensional parameter space, the flow exhibited alternating bands of frequency-
locking and quasi-periodicity. The growth of major resonance horns in parameter
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space away from the critical surface was also mapped out. The horns studied were
not observed to interact in this study, since the dynamics of the flow were not
explored sufficiently far beyond the instability threshold. In the postcritical regime
beyond the primary transition surface, the axial wavenumber variation was relatively
small over most of the parameter space. In a localized region, however, very large
gradients in axial wavenumber were found that were well correlated to the expected
boundaries of the Neimark–Sacker bifurcation for this flow. The experiments also
captured the physical manifestations of the bifurcated flow states and their subsequent
destabilization. The flow structure remained axially and azimuthally periodic close
to the bifurcation curve. The axial forcing gradually destabilized the wavy Taylor
spirals observed at criticality and permitted regions of chaotic flow, characterized by
markedly reduced periodicity, to form at random points in the flow.

Stimulating discussion with F. Marques and J. M. Lopez are appreciated. The use
of sliced stacks was suggested by J. J. Allen. The work was supported by the NSF
through Grant CTS97-06902 and the AFOSR (Dynamics and Control, Dr B. King).
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